Index

Note: Italicized page locators refer to exhibits.

Acceptance testing, 217
Accounting errors: in yield case, 186–87
Accounting systems: error prevention in healthcare and, 26–27
Ad hoc teams: communication and, 101–2
Alarm fatigue: time-based messaging and, 132
Alarm overload: time-based messaging and, 132
American Express, 11
Amusement park workflow case set, 233–35
Analysis of variance (ANOVA): Excel label, 75; regression, 74–78
Analysis ToolPak (Excel): loading and activating, 75–76
ANOVA. See Analysis of variance
Anticipation, 2
Applied statistics: modern, 63
Aristotle, 82
Assault rates: on healthcare workers, 30
AT&T, 8
Autonomy: patient safety, computerization, and, 132–33
Autopsy/diagnosis studies: intrinsic variability and, 130–31
Average(s): sample, tracking chart for, 62; Six Sigma system limits and, 42
Average value: sample size required in relation to, 151; trial duration for changes in, 149–51, 150
Average value confidence intervals: calculating, in process tracking case, 180; multipliers on, 66, 66; tracking chart for, 66
Backup equipment, 87
Baka-yoke, 18
Balanced Score Card: Six Sigma and, 14
Baldrige Award. See Malcolm Baldrige Award for Health Care
Band-Aids: smart, 134, 135, 137
Barach, Paul, 100
Barcode readers, 26
Baseline: understanding, 49
Batching, 116–17
Batch of one: patient and, 119
Bathroom falls case: analysis, 225; data, 225, 225; lessons learned, 225; work, 224
Bathtub curve: error frequency and, 21; example of, 147; nature of trial and, 146–47
Battery life data: in incomplete trials case, 196–98
Battery lifetime evaluation: sequential analysis case, 219
Bell Labs, 8
Benchmarks: events and, 85
Big data, 130
Binomial distribution: gurney pool analysis, 200, 201
Binomial event, 152
Biometric scanners, 25
Black belts: Six Sigma, 15, 16
Black belt series of cases, 176
Blood sample tester: test reliability case, 189–91
Bonus series of cases, 176
Bottleneck, 108–14; barriers and, 113–14; dental practice example, 108–9; downstream, 110; Goldratt's model and, 110–11; kanban and, 110; management downstream of, 113; management upstream of, 112; placement, 113; reasons for, 111; upstream, 109
Bottleneck traffic capacity analysis, 120–22
Boxcar average, 79
Box charts, 33; of consecutive consultations, 34; of consultation time with doctors, 33
Branch points: foreseeable, 123–24
Buildings: error prevention in healthcare and, 20, 27–28
Bunching, 117
Campaigns: change management and, 140
Capacity analysis: bottleneck traffic, 120–22; definition of, 120, 239
Care management events, 5
Case administration: error prevention in healthcare and, 27
Cases: black belt series of, 176; bonus series of, 176; companion website, 176–77; green belt series of, 175–76; overview, 175; spreadsheet use, 176. See also individual cases
Causality, 81–82
Centers for Medicare & Medicaid Services: error rate for payouts by, 36
Central limit theorem, 202–5; analysis, 204; data, 204; demonstrating validity of, 202–3, 204; lessons learned, 204–5; topic: central tendency, 202–3; work, 203–4
Central tendency, 202–3
CEO: setting the culture and, 1–2
Chain of events: root causes and, 96; walking through, 82
Change management, 4, 139–72; factorial experiments, 155–57; fewer, larger changes, 141; integrated example, 158–68; many small changes, 139–41; many vs. few choice, 142; nature of trials, 143–49; sample size for the standard deviation, 151–52; selecting changes, 139; testing the hypothesis, 154–55; testing with very low error rates, 152–54; thinking through the proposal, 142–43; trial duration for changes in the average value, 149–51; trial of a handheld device, 168–72
Changes: unforeseen ripple effects of, 141
Chassin, Mark R., 4
Cheaper by the Dozen (film), 8
Chicago fire of 1871: causality in, 81–82; chain of events in, 82; three-plane model and, 83–84
Childproof caps: interlock and, 22; poka-yoke and, 18
Chi-square distribution, 151
Chi-square method, 64, 67
Chronic variability level, 51
Classical statistical tests: applying to rich data sets, 121–17
Code Blue events, 101
Code events stations, 101, 101–2
Communications: computer-to-computer, 103–4; correction, 100; design for success, 99; doctor’s orders, 104; electronic patient record narrative, 105; hospital discharge, 103; nursing-shift change, 103; reply, 100; surgery intensive care unit to medical-surgical transfer, 103; teams and, 100–102; three rules in, 99
Communications systems, 27–28
Comparable events, 85
Computer displays: error prevention in healthcare and, 23
Computer failure: autonomous computers and, 133; protecting patient and, 127
Computerization of healthcare, 127–37; autonomy and patient safety, 132–33; big data, 130; electronic patient records and data entry, 128–29; evolved IV pole and, 133–34; intrinsic variability and, 130–31; message overload, time-based messaging, and, 131–32; Patient’s Advocate movement and, 136–37; primary lessons for, 127–28; wearables and, 134–36
Computerized mannequins: anesthesiologist training and, 21
Computer self-test, 208
Computer-to-computer communications, 103–4
Computer-to-person communications: message overload and time basis for, 131–32
Conditions: root causes and, 96, 97; in three-plane model, 83, 83
Confidence interval(s), 63, 79; on the average value, tracking chart for, 66; calculating for the average: spreadsheet method, 65; calculating for the average: tabulated values method, 67; calculating for the standard deviation: spreadsheet method, 68; calculating for the standard deviation: tabulated values method, 69; meaning of, 65; for population average value, 64–67; for population standard deviation, 67–71
Confidence level: setting, trial duration, and, 149
Constraints: root causes and, 96, 97; in three-plane model, 83, 83
Containment, 2
Continuous improvement, 14
Control charts, 50–54; hypothesis testing with trials and, 154–55; with limits, creating, 177–78
Cost–benefit analysis: handheld device trial, 171
Cox, J., 110
Creativity: benefiting from, 91
Criminal events, 5
Crosby, Philip, 10, 13, 140; 14 points of, 11; quality defined by, 12
Culture: CEOs and setting of, 1–2
Cumulative analysis: in incomplete trials case, 196–98
Cumulative gamma distribution: formula for, 237
Cumulative normal distribution: formula for, 237
Cumulative Poisson distribution: formula for, 237
Cumulative process performance: yield case, 186–88
Cumulative Student’s t-distribution: formula for, 238
Cumulative uniform distribution: formula for, 237
Cyclical data: linear regression on, 77, 77
Cyclical patterns: tracking charts, 57, 57
Data: fitting a straight line to, 75
Data entry: controlling, 127; electronic patient records and, 128–29
Data gathering: in-trial, 145–46; Six Sigma integrated example, 161, 161–62
Data networks: error prevention and, 28
Data portrayal case, 177–80; analysis, 179–80; topic: tool data, 179; lessons learned, 180; topic: tool drill, 177; work, 177–79
Data sampling case, 205–8; analysis, 208; full data set, 206–7; lessons learned, 208; topic: reduced tracking methods, 205; work, 206
Data Sharing Project (PIAA), 129
Data tracking, 56–58; in performance evaluation, 83–84; process tracking with drift, 58; typical tracking chart, 57
Degrees of freedom: Excel label, 75; size of sample set and, 75
Demand: external surge in, 88; internal surge in, 87
Deming, C. Edwards, 10, 11, 139, 140, 144, 145; 14 steps of, 9
Design of work, 86
Diagrammatic tools, 91–94; failure modes and effects analysis, 91–93, 92; fishbone analysis, 93–94, 94
Difficulties: categories of, 86–90; design of work, 86; equipment failure, 86–87; external surge in demand, 88; hidden equipment malfunction, 87; infrastructure, 88–89; internal surge in demand, 87; unplanned circumstances, 89; unplanned events, 89; willful misconduct, 89–90; worker error, 86

Disambiguation, 99

Disaster drills, 21

Discharge instructions, 103

Discrete analysis case: analysis, 202; data, 201; lessons learned, 202; topic: known populations, 200–201; work, 201

Discrete events modeling: in Poisson distribution case, 193–95

Distractions, 125

Doctor consultations: box chart of consecutive consultations, 34, 34; box chart of consultation times, 33, 33–34; histogram of consecutive consultations, 35; histogram of consultation times, 32, 32–33

Doctor’s orders, 104

Drifted normal distribution: with system limits, 43–44, 44

Duration testing, 196

Efficient cause, 81, 82

Electrical demand, 88–89

Electric backup systems, 27

Electronic patient records: data entry and, 128–29; narrative, 105

Emerson, Ralph Waldo, 20

Employees: poka-yoke guidelines, work flow, and, 173

Employee security: error prevention in healthcare and, 30

Environmental events, 5

Episodic variability level, 51

Equipment: essential, error prevention in healthcare and, 24; failure, 86–87

Erlang, Anger, 120, 239

Erlang B distribution: formula for, 238; for traffic analysis, 240–41

Erlang C distribution: formula for, 238; for traffic analysis, 240, 241–42

Erlang statistical models, 120, 121, 239; Erlang B statistical model: applying, in traffic analysis A case, 227, 228, 229; Erlang C statistical model: applying, in traffic analysis B case, 229–31

Erlang traffic analysis, 239; Erlang B distribution, 240–41; Erlang C distribution, 240, 241–42

Error prevention, 17–30; accounting and, 26–27; buildings and infrastructure and, 20, 27–28; case administration and, 27; computer displays and, 23; employee security and, 30; essential equipment and, 24; fatigue and, 24; keying and interlocks and, 22; kitten and, 22–23; medication and, 28–29; patient identification and, 25; patient location and, 25; pause and, 25; personalization and, 19–20; poka-yoke and, 17–18; recovery and, 25–26; repetition and, 21–22; status of work and, 24; stopping the line and, 26; tell-tale and, 29; training for the exceptional event and, 20–21; verbal orders and, 18–19

Error rates: pharmacy order example, 46, 46–49; tracking, 35; very low, testing during trials and, 152–54; in yield case, 186

Errors: defined, 39; in healthcare, types of, 13; inadvertent in data-entry task, addressing, 128. See also Error prevention

Euclid, 148

Evaluations: of trials, 146–47

Events: benchmarks and, 85; causality, 81–82; chain of, 82; comparable, 85; digging into, 84–85; positive, 91; sentinel, Joint Commission and, 95

Evidence: visualizing, 31

Evidence-driven analysis, 175

Excel: Analysis ToolPak, 75–76; labels with their meanings in, 75

Exceptional event: training for, 20–21

Exponential data sets: sampling rules developed for, 211, 212

Extra-check potential problem analysis, 160

Face scanners, 25

Factorial experimental series: defined, 155

Factorial experiments: change management and, 155–57

Failure modes: Six Sigma integrated example, 163–66; common failure mode analysis, 165; dosage failure mode analysis, 163; failure mode chart for the physician, 164; failure mode chart for the staff nurse, 165; failure mode for the charge nurse, 164

Failure modes and effects analysis, 91–93, 92; benefits of, 199; doing to any depth, 198

Failure modes and effects case: analysis, 199–200; data, 199; lessons learned, 200; topic: linkages, 198–99; work, 199

Failures: equipment, 86–87; systematic analysis of, 198–200

False negative: defined, 218

False-negative confidence tests: applying to sequential data, 218, 220

False-negative error: blood sample tester, in test reliability case, 189

False-negative outcome: trial design/evaluation and, 148

False positive: defined, 218

False-positive confidence tests: applying to sequential data, 218, 220

False-positive error: blood sample tester, in test reliability case, 189

False-positive outcome: trial design/evaluation and, 148

Fatigue: error prevention in healthcare and, 24

FCC. See Federal Communications Commission
F distribution: Excel labeling for F and, 75
Federal Communications Commission (FCC), 135
Fire zones: testing, 27
First-time-through yield, 186, 187, 188
Fishbone analysis, 93–94, 159
Fishbone diagram: example of, 94; use for, 93
Flight simulators, 21
Focused tracking methods: rule-based sampling and, 208–9
Foreseeable branch points, 123–24
Foreseeable interruptions, 122–23
Formal cause, 81, 82
f.test: applied to sample sets, 73, 73
Functional test: equipment checkup, 208–9
Gamma distribution: cumulative, formula for, 237
Gauge analysis, 71
Gawande, Atul, 100, 101, 123
General Electric, 11, 16
Gilbreth, F. B., 8
Global optimization: local optimization vs., 220–22
Goldratt, E. M., 110
Goldratt theory: essence of, 110–11
Gong line-fit plot, 157
Goodness of fit: in statistical analysis, 74
Goodness-of-fit value: significance Excel label and, 75
Google: flu-tracking system, 130
Gosset, William Sealy, 63
Gossypiboma, 5
Green belts: Six Sigma, 15, 16
Green belt series of cases, 175–76
Gurney pool analysis, 200–202
Handheld device trial, 168–72; conclusion of the event, 171–72; cost–benefit analysis, 171; long-term tracking, 170; trial duration, 168–69; trial execution, 169–70
Hanging (or hanging up), 117
Healthcare: types of errors in, 13
Healthcare workers: assault rate on, 30
Hidden equipment malfunction, 87
HIFU (high-intensity, focused ultrasound), 132–33
High-Reliability Organizations: characteristics of, 2–3; computerization as boon for, 128; initiatives, Total Quality Management as forerunner of, 15; many-versus-few choice in, 142; prudent design and, 133; Six Sigma and aim of, 173; Six Sigma in, 3–4
Histograms, 32; of consecutive consultations, 35; of consultation time with doctors, 32; of seven days of data, 51
HISTOGRAM tool, 178, 179
Hold points: defined, 123; interruptions at, 124
Honda, 115
Hospital discharge: communication and, 103
Human factors engineering, 128
“Hurdle” notion, 139
Hypothesis testing: trials, 154, 154–55
IBM, 11
Idle workers: management upstream of bottleneck and, 112
Improvement project case: analysis, 223; data, 223; lessons learned, 223; topic: snap-on patient monitors, 222–23; work, 223
Incomplete trials case: analysis, 198; data, 197; lessons learned, 198; topic: cumulative analysis, 196–97; work, 197
Information overload: computer displays and, 23
Infrastructure: breakdown, 88–89; error prevention in healthcare and, 27–28
In Search of Excellence books (Peters and Waterman), 11
Institute of Medicine (IOM): quality defined by, 12
Integrated example of Six Sigma approach, 158–68; action, 159; assessing stop-gap measures, 162; common failure mode analysis, 165; data gathering, 161–62; dosage failure mode analysis, 163; event, 158; extra-check potential problem analysis, 160; failure mode chart for charge nurse, 164; failure mode chart for physician, 164; failure mode chart for staff nurse, 165; failure modes and effects analysis, 163–66; group conclusions, 167; implications of Six Sigma system limits, 162–63; management action, 168; standing procedure, 158–59; stop-gap measures, 159–61; three-plane modeling of pharmacy order issue, 166–67, 166–67
Intercept, 75
Interlocks: error prevention in healthcare and, 22
International Organization of Standardization, 11
Interruptions, 122–24; foreseeable, 122–23; foreseeable branch points, 123–24; at a hold point, 124; reducing, 124; roll forward, roll back, 124
Intrinsic variability: in electronic patient records, 130–31
IOM. See Institute of Medicine
Ishikawa diagram, 93
ISO 9000, 11
Isolation zones: testing, 27
IV pole: evolved, 133–34
Japan: postwar economy in, 9, 10; quality circles in, 140
Johnson Space Center, 23
Joint Commission, 4, 7, 8; mandated actions for sentinel events, 95; root causes and, 96
Juran, Joseph M., 9, 10, 11, 141, 142
Kanban: bottleneck and, 110
Keying: error prevention in healthcare and, 22
Kitting: error prevention in healthcare and, 22–23
Kizer, Ken, 4
Known populations: in discrete analysis case, 200–202
Lean concept, 4, 107–8
Life testing, 196
Linear regression: on cyclical data, 77, 77; example, 74, 74
Linkages: in failure modes and effects case, 198–200
Local optimization: global optimization vs., 220–22
Loeb, Jerod M., 4
Low-error data entry: examples of, 128–29
MacArthur, Douglas, 9
Magnetic resonance imaging (MRI), 111, 113, 119, 120
Malcolm Baldrige Award for Health Care: creation of, 11; Six Sigma and, 14
Management: policy change and, 95; Six Sigma and, 173; system limits and interest to, 55–56
Managing the Unexpected: Resilient Performance in an Age of Uncertainty (Weick and Sutcliffe), 2
Mannequins: computerized, 21
Material cause, 81, 82
MBANs. See Medical body area networks
Mean of the sum of squares (MS): Excel label, 75
Measured values: interpreting, in test reliability case, 188–90
Mechanisms: in three-plane model, 83, 83
Medical body area networks (MBANs), 135
Medication errors, 28–29
Message overload: time-based messaging and, 131
Microsoft Excel 2016, 176
Misconduct: willful, 89–90
Mistake-proofing. See Poka-yoke
Motorola, 11
MRI. See Magnetic resonance imaging
MRI center: Erlang statistical models example, 122; traffic analysis with queue, 229–31
MS. See Mean of the sum of squares
Multinomial distribution, 200
Multistep performance, 40
Multistep processes: management view of, 59–60
Murphy’s Law, 10, 142
Narrative: role of, in electronic records age, 105
NASA, 23; loss of astronauts, 93
National Institute of Standards and Technology, 14
Near-misses: studying, 3
Negative binomial distribution, 153, 169
Never Events: categories of, 4–5
Newell, Allen, 131, 132
Normal curve, 36–37
Normal distribution, 36, 202, 203, 204; balanced, with system limits, 43, 43; cumulative, formula for, 237; drifted, with system limits, 43–44, 44; with tail, 37
Nosocomial infections: Xenex robot and, 133
No-stick syringe trial: potential problem analysis, 184–86
Now-casting, 130
Null hypothesis, 218; rich data sets case, 213, 216; trials and, 147–48
Nursing home management: Erlang’s no-queue analysis and, 121, 121–22
Nursing-shift change: communication and, 103
Outcomes, 2
Paraprofessional staff changes example: factorial experiments and, 155–56
Parkinson’s Law, 10
Patient falls, 5
Patient identification, 25
Patient location: error prevention in healthcare and, 24
Patient monitors, snap-on: designing trial program for, 222–23
Patient protection events, 5
Patient’s Advocate movement, 136–37
Patient safety, 2; computerization and, 132–33; Never Events and, 4–5
Pauses: error prevention in healthcare and, 25
Peele, Pamela, 129
Pending, 116
Performance evaluation case: analysis, 183–84; data, 183; lessons learned, 184; topic: Six Sigma limit checks and performance ratios, 182; work, 182–83
Performance ratio (Cp): calculating, 183
Periodic data sets: sampling rules developed for, 210–11, 212
Personalization: error prevention in healthcare and, 19–20
Peter Principle, 10
Pharmacy order example, 46–49; error rate analysis, 46, 46–49; histogram of, 47; initial model, 47; revised model, 48
Phonetic alphabet: using, 99
PIAA Data Sharing Project, 129
Poka-yoke, 21; accounting systems and, 26; case administration and, 27; computer displays and, 23; employee security and, 30; error prevention and, 17–18; guidelines for, 19; infrastructure systems and, 28; keying and, 22; meaning of, 18; medication errors and, 28–29; optimal system performance and, 173; patient location and, 25; recovery and, 26; repetition and, 22
Policy change: management action and, 94–95
Population average value: calculating confidence intervals for, spreadsheet method, 65; calculating confidence intervals for, tabulated values method, 67; confidence intervals for, 64–67
Population standard deviation: confidence intervals for, 67–71
Positive events, 91
Potential problem analysis, 145; example of, 143; extra-check, 160; handheld device trial, 169–70; rationale behind, 142
Potential problem analysis case: analysis, 185; data, 185; lessons learned, 185; topic: no-stick syringe trial, 184–85; work, 185
Pre-death diagnoses: intrinsic variability and, 130–31
Pressure ulcers case, 225–27; analysis, 226; data, 226; lessons learned, 227; work, 226
Probabilistic weighting, 91
Probability: testing with very low error rates and, 152–54
"Probable Error of a Mean" (Gosset), 63
Problem detection and visualization, 31–80; American industry and, 36; analysis of variance: regression, 74–78; confidence intervals for the population average value, 64–67; confidence intervals for the population standard deviation, 67–71; control charts, 50–54; data tracking, 56–58; management interest, 55–56; management view of multistep processes, 59–60; process flow diagrams, 50; quantitative analysis summary, 79–80; quantitative process analysis, 60–61; repeatability and reproducibility, 71–73; Six Sigma measures, 35–36; Six Sigma operations analysis, 40–41; Six Sigma process analysis, 41–42; Six Sigma system limit lines, 54–55; Six Sigma system limits, 42–49; sparse data sets and, 63–64; time-weighted values, 79; tracking process average directly, 61–62; tracking the process, 61; tracking the process standard deviation directly, 62–63; understanding the baseline, 49; what to do with data, 31–35
Problem employees and managers: getting rid of, 90
Process control charts: advantages of, 54; based on five days’ operations, 53; based on seven days’ operations, 54; data tracking on, 56; histogram of seven days of data, 57; plotting data on, 61
Process control limits, 45, 46; management interest and, 55; setting, 56; upper and lower, 52; value of, 54; for X-bar values, 62
Process flow diagrams, 50, 50
Process standard deviation: tracking directly, 62–63
Process tracking, 45–46
Process tracking case: analysis, 182; data, 181; lessons learned, 182; topic: process observation and analysis, 180; work, 180–81
Product or device events, 4
Pronouns: eschewing, 99
Prostate cancer: high-intensity, focused ultrasound and, 132
Proximate cause, 81, 82
Proximity limit (Cp, k): calculating, 183
Quality: Institute of Medicine definition of, 12
Quality circles, 140
Quality is Free (Crosby), 10
Quality measures, 12
Quantitative analysis: summary, 79–80
Quantitative process analysis, 60–61
Quarantine zones: testing, 27
Queuing, 115–16
Radiologic events, 5
Random sampling, 205, 206, 208
Recovery: error prevention in healthcare and, 25–26
Recovery time measurements, 209
Reduced tracking methods: data sampling case and, 205
Regression: definition of, 74; Excel label, 75; linear regression example, 74, 74
Regression analysis: straight-line fit, 76
Regulation: bottlenecks and, 111
Relay teams: communication and, 102
Repeatability, 71
Repetition: error prevention in healthcare and, 21–22
Reply: senders, receiving party, and, 100
Reproducibility, 71
Residual: Excel label, 75
Retina scanners, 25
Rich data sets, 61, 79
Rich data sets case, 212–17; analysis, 216–17; data, 213–16; lessons learned, 217; topic: classical set analysis, 212; work, 212–13
Ripple effects: of change, 141; potential problem analysis and, 142
Robots, 133
Roll forward, roll back: interruptions and, 124
Root cause analysis: criticism of, 97
Root causes, 96–97
Rule-based sampling, 208–12; analysis, 212; data set 1, with periodic component, 210–11; data set 2, with exponential recovery time, 211; lessons learned, 212; topic: focused tracking methods, 208–9; work, 209–10
Rule-induced upsets case, 220–22; analysis, 221–22; data, 221; lessons learned, 222; topic: management effect on service, 220–21; work, 221
Sales departments: campaigns run by, 140
Samples: comparing, in process tracking case, 181
Sample set: degrees of freedom and size of, 75
Sampling plan: getting it right, 61
Scatter diagram manipulation, 183, 184
Scientific management, 8, 9
Self-directed medical care, 136
Sensory overload: work-environment distractions and, 125
Sentinel events: Joint Commission and, 95
September 11, 2001, terrorist attacks, 21
Sequential analysis case, 217–20; analysis, 220; data, 219–20; lessons learned, 220; topic: acceptance testing, 217–18; work, 219

266 Index
Sequential data: false-positive and false-negative tests applied to, 218, 220
Service improvement analysis: discrete analysis case, 200–202
Service organizations: errors, 38
Service windows: inconsistent and consistent performance and, 39, 39
Sigma values: tails for selection of, 37
Sigma (σ or σ): standard deviation and, 36
Signage, 20
Significance: Excel label for goodness-of-fit value, 75
Significance level: calculating, 149
Six Sigma, 7–16; application of, 15–16; attainable goals with, 12, 173; belts, 15–16; description of, 3, 12–14; drill on applying, 177–80; eliminating nonessential variability with, 33; first programs, 11; four facets of, 13; in High-Reliability Organizations, 3–4; measures, 35–36; process analysis, 41–42; quality management programs and, 14–15; revised pharmacy order model, 48, 48; system limit lines, 54–55; system limits, 42–49; using, reasons for, 7–12; variability and, 49
Six Sigma operations analysis: system yield and performance time, 40–41
Sleep analysis: wearables and, 135
SmartDraw, 50
Smartphones, 131, 134, 135
Smart wearables, 134–36
Social Security Administration, 128
Solo relay teams: communication and, 102
Solutions: generalizing, 90
Sony, 11
Space Station Freedom, 23
Sparse data sets, 60; dealing with, 63–64; looking at confidence intervals and, 79
S-plot, 62
Spreadsheet method: calculating confidence intervals for the average, 63; calculating confidence intervals for the standard deviation, 68
Spreadshets: visualizing evidence with, 31
SS. See Sum of squares
Standard deviation: calculating confidence intervals for, spreadsheet method, 68; calculating confidence intervals for, tabulated values method, 69; determining, in yield case, 187; multipliers to apply to sample, 68; Six Sigma system limits and, 42; tracking chart for confidence intervals for, 70
Standard deviation, trials and: precision in standard deviation units, 151; sample size for, 151–52; sample size required in relation to, 151
Standard deviation confidence interval: effect of sample count on size of, 69, 69–70; setting, in process tracking case, 181
Stop-gap measures: Six Sigma integrated example, 159–61, 162
Stopping the line: error prevention in healthcare and, 26
Straight line: fitting to data, 75–76; regression analysis, straight-line fit, 76
Stress: work-environment distractions and, 125
Student’s t-distribution, 64; cumulative, formula for, 238
Suggestion boxes, 140–41
Sum of squares (SS): Excel label, 75
Surface plotting tools, 78
Surge capacity: bunching and, 117; workflow and, 115
Surgery intensive care unit to medical-surgical transfer: communication and, 103
Surgical events, 4
Surgical teams: communication and, 100–101
Sutcliffe, Kathleen M., 2
Sutures: smart, 136
System flaws: computerization and, 127
System limit band, 42, 54, 55
System limit lines, 54–55
System limits: balanced normal distribution with, 43, 43; control chart with, 56; drifted normal distribution with, 43–44, 44; importance of, 44–45; management interest and, 55; pharmacy order example, 46, 46–49, 47, 48; process tracking and, 45–46; Six Sigma, 42–49; Six Sigma integrated example, implications of, 162–63
System performance: optimal, 173
System performance time: definition of, 40
System reliability, 24
System yield, 40
Tabulated values method: calculating confidence intervals for the average, 67; calculating confidence intervals for the standard deviation, 69
Tail(s): description of, 37; normal distribution with, 37; for selection of sigma values, 37
Target process: understanding the baseline, 49
Taylor, F. W., 8
Teams: ad hoc, 101–2; communications and, 100–102; relay, 102; solo relay, 102; surgical, 100–101
Technology change, 95
Telephone call centers: Erlang statistical models and, 239
Tell-tale: error prevention in healthcare and, 29
Testing processes, trials: number of tries before any failure, 153; with very low error rates, 152–54
Test reliability case: analysis, 191; data, 191; lessons learned, 191; topic: interpreting measured values, 188–90; work, 190–91
Test reliability test: O+ machine and tester, 190
Texas Instruments, 11
Therbligs, 8
Three-plane models, 83, 83–84; pharmacy order issue, 166–67; root causes and, 96
Time-base messaging, 131–32
Time-value charts: purpose of, 192; for X-ray visit, 118, 118–19
Time-value charts case: analysis, 192; data, 192; lessons learned, 193; topic: comparing two scenarios, 192; work, 192

Time-value diagrams, 50; amusement park workflow case set, 233, 234

Time-weighted values, 79

Total Quality Management (TQM): Six Sigma and, 14–15

Tracking charts: for confidence intervals for the standard deviation, 70; for confidence intervals on the average value, 66; hypothesis testing with trials and, 154; typical, 57

Traffic analysis A case: analysis, 229; data, 228; lessons learned, 229; topic: traffic analysis with no queue, 227; work, 227–28

Traffic analysis B case: analysis, 230–31; data, 230; lessons learned, 231; topic: traffic analysis with queue, 229; work, 229–30

Traffic engineering, 120, 239

Trial duration for changes in average value, 149–51; calculating significance level, 149; estimating average value trial length, 150; precision in standard deviation units, 151; sample size required in relation to average value, 151

Trial of a handheld device, 168–72; conclusion of the event, 171–72; cost–benefit analysis, 171; long-term tracking, 170; trial duration, 168–69; trial execution, 169–70

Trials, nature of, 143–49; bathtub curve, 146–47; in-trial data gathering, 145–46; null hypothesis, 147–48; participants decide the outcome, 144–45; trial duration, 148–49

t.test: applied to sample sets, 72, 72

Tucker, A. L., 124

Two-stage yield analysis: applying to testing, 188–91

Uniform distribution, 203; cumulative, formula for, 237; manipulating random numbers from, 203–4

Unplanned circumstances, 89

Unplanned events, 89

Untoward events, 8

Untoward outcomes, 3

US Navy, 2

Value from the F distribution (F): in Excel, 75

Variability: baseline and, 49; nonessential, eliminating, 33; reducing, 3, 12, 173; tracking, 36

Variance: of a distribution, 74

Verbal orders: error prevention and, 18–19

Visio, 50

Waiting rooms: information found in, 35

Wait types, 115–17; batching, 116–17; bunching, 117; hanging, 117; pending, 116; queuing, 115–16

Walmart, 19, 20, 140

Walton, Sam, 19, 20

War Production Board, 8, 9

Water supply, 88

Wearables, 134–36

Weibull distribution: battery lifetime evaluation, 219, 220

Weibull function, 147

Weick, Karl E., 2

Willful misconduct, 89–90

Winter–summer effects: regression analysis and, 80

WISER training programs (University of Pittsburgh), 101

Work-environment distractions, 125

Worker error, 86

Worker stress: systematic reduction of, 18

Workflow, 107–25; batch of one, 119–20; bottleneck and, 108–14; bottleneck traffic capacity analysis, 120–22; distractions and, 125; interruptions of, 122–24; Lean concept, 107–8; managing, 114–15; surge capacity, 115; timeout charts and, 118–19; wait types and, 115–17

Work-shift effects: regression analysis and, 80

Work status: error prevention in healthcare and, 24

Work task design, 86

World War I, 8

World War II, 8

Wrist straps: smart, 134, 135

Wristwatches: smart, 134, 135

X-bar charts, 184

X-bar plot, 61

Xenex robot, 133

X-ray delivery case: null hypothesis and, 147–48

X-ray delivery times: data sets recording, 212–16

X-ray visit: process flow chart, 50, 50; time-value charts for, 118, 118–19

X variable 1: Excel label, 75

Yield: first-time-through, 186, 187, 188; system, 42

Yield case: analysis, 188; data, 187; lessons learned, 188; topic: cumulative process performance, 186; work, 186–87

“Zero defect day” campaigns, 140